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AXISYMMETRIC FUNDAMENTAL SOLUTIONS FOR THE EQUATIONS 

OF HEAT CONDUCTION IN THE CASE OF CYLINDRICAL 

ANISOTROPY OF A MEDIUM 

S. E. Mikhailov UDC 517.95 

Numerical methods of solving the boundary-value problems for the equations of mathema- 
tical physics based on the application of fundamental solutions, i.e., solutions describing 
the reaction of infinite space or an infinite plane to a concentrated action, are currently 
in widespread favor. Among these methods we can include the direct and indirect methods 
of boundary integral equations [i], as well as the method of sources in which the solution 
of the boundary-value problem is constructed by superposition of concentrated actions in 
space, above some surface encompassing the area under investigation [2]. For the equations 
of steady and nonsteady heat conduction in an isotropic medium such solutions are well estab- 
lished (see [i] and the references cited there) both for the two- and three-dimensional 
cases, as well as for the case of the axisymmetric problem. The plane and three-dimensional 
equations of heat conduction for a rectilinear anisotropic medium can be reduced to the 
isotropic case. We know of three-dimensional fundamental solutions for the equations of 
elasticity theory in the case of a medium with rectilinear anisotropy [3] and for a recti- 
linear anisotropic hereditary (or memory) elastic medium [4, 5]. 

The axisymmetric fundamental solutions for the steady and nonsteady equations of heat 
conduction in the case of a cylindrical anisotropic medium are constructed in the present 
study by reducing them to the corresponding equations for isotropic media. We present the 
limit relationships for the characteristic parametric values. As one of the limit cases 
we have derived the fundamental solutions for the steady and nonsteady equations of plane 
heat-conduction problems for a rectilinear anisotropic medium. 

The equations of nonsteady heat conduction in an arbitrarily anisotropic medium have 
the form 

div q +  oF,t= Q, q =  --ZVT. ( O o l )  

He re  T i s  t h e  t e m p e r a t u r e ;  ,q i s  t h e  h e a t - f l u x  v e c t o r ;  Q i s  t h e  s p e c i f i e d  r e l e a s e  o f  h e a t ;  
c is the coefficient of heat capacity; ~ is the symmetric heat-conduction tensor; t is time. 
The subscript which appears after the comma denotes the derivative with respect to the cor- 
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responding coordinate; no summation is assumed over the repeated subscripts in the follow- 
ing. 

Let the medium exhibit cylindrical anisotropy and let (r, 8, z) represent the cylin- 
drical system of coordinates whose z axis coincides with the axis of anisotropy. Then, 
in this coordinate system the components of the heat-conduction tensor X~(=, $ = r, 8, 
z) are constant and substitution of the second of the equations from (0.i) into the first 
yields 

%rr( T.rr J" T.r/r ) + %00T.oo/r 9" + %zzT,zz + 2groT,roIr + 

_]u Xrz(2T,r z + T,z/r) + 2%zoT,od r - -  cT,t = - -  Q(r, O, z, t). 

( 0 . 2 )  

i. The Axisymmetric Fundamental Solution of the Steady Equation. We will look for 
the solution of (0.2) with a right-hand side Q = Q06(r - r0)6(z - z 0) (6 is the Dirac delta 
function and Q0is a constant, with (r0, z 0) representing the coordinate of the source). 
Since the right-hand side depends neither on 8 nor t, this relationship disappears in (0.2) 
as well. If the medium is isotropic, then Xrr = • • = 0 and Eq. (0.2) changes into 
the axisymmetric Laplace equation 

T , , ,  + T . ~  + T . f l r  = F,  F = ( -Qo/%r , )6  (r - ro)6 (z - Zo), ( 1 . 1 )  

whose solution is well known from [i] "'~ 

T* (r, z; ro, Zo) = Qoro K (~t) Qo 

~x/2 

K(~) = ~ (I--,~2sin20)-I/2d8 is the total normal elliptical Legendre integral of the where 
0 

first kind; Q-I/2 is the Legendre function of the second kind; 

a = r ~ +  ro ~ +  (Z--Zo) ~, b = 2rr o, ~ =  ~ 2 b / ( a +  b). ( 1 . 3 )  

Let us bring the axisymmetric steady equation to the form of (i.i), for which purpose 
we will change from the variables (r, z) to the variables (r, C): 

= (z - -  x lr) l~,  ~ = X , / X , , ,  ~ = 1 / ' ~ / ~ , ,  - -  ( X , J Z , , )  ~, ( 1 . 4 )  

and after substitution into (0.2) we derive the axisymmetric Laplace equation (i.i) for 
r, ~ relative to T o with the right-hand side 

F~ ~; to, $o) = ( - Q ~ % , , ) 6 ( r  - ro) 6 [~(~ - $o) q- %~(r - ro)]. 

Using (1.2) as the nucleus of the volume potential with density F ~ we have the sought 
fundamental solution of the axisymmetric steady equation (0.2) 

T (r, z; r o, zo) = ~ Z r ,  ~ a~ + b = ~ 0-1 /2  --U ; ( 1 . 5  ) 

a o = r 2 + ro ~ + ~A2, ~o = ] / 2 b / ( a O +  b). ( 1 . 6 )  

Here and below, r A = r - r 0, z A = z - z 0, ~A = ~ - ~0 = (ZA -- x1rA)/g; R = /rA ~ + ~A 2. When 
we take into consideration the properties of the Legendre functions of the second kind and 
their relationship to the elliptical integrals [6, 7], from the second of the equalities 
in (1.5) we can derive expressions for the gradient of the fundamental solution 

V T  = T s ( r ,  z; r o, Zo)e, + T ~(r, z; r o, zo)e~= 

*Let us note that in [i] for the elliptical integral it is apparently the definition of 

K(m)= .I (i--msin2O)-I/2d0 that is used and therefore in an expression such as (1.2) it is 

0 

the parameter m = D2 that plays a role as opposed to ~. There is a printing error in the 
expression for the argument of the Legendre function. 
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+ $J~2 E (po) e~} = Oo 1 

( 7 = E(~) = (i--~2sin~0)I/2d0 is the total normal elliptical Legendre integral of the second 
o 

k i n d ) .  

Let us also dwell in some detail on the limit properties of the fundamental solution 
as r/r0 + 0, r0/R ~ 0, R/r0 + 0: 

r'-'5-'-'"0==~ l+'-~_z , VT..-~ Q o [-z~ i +  (%le,.--e~); 
rti 2~%rr % J  2~'>Xrr r~ re 2 ,J 

-, qo ro - q o  ro r-~ -+O=c~ x-+----, VT--) - -  [(x=ra-- Xnz~)e~-- 
2~%rr R ~ 2 z R 2~ %rrR 

- -  (%nra  - -  %,.rza) e4. 

(1.7) 

These limit values have been obtained from the representation of the solution in terms of 
elliptical integrals. For their derivation as R/r 0 + 0 we will use the representations 
of the solutions in terms of the Legendre functions and we will take into consideration 
that~a~ = 1 + (R/r0)2/2 + O(R3/r03), while for small q [6] 

l ( ~ - ) - - ? - - r  + v) + O ( ~ l n ~ )  q~ (I + 0) = - ~ In 

(9 is the logarithmic derivative of the F-function and 7 is the Euler-Mascheroni constant). 
Then, if we denote c I = y + 9(1/2), we have 

F/ R ,,2 R ] 
~o --+ 0 =~,- T'--+ zz~X~."-'00 [ l nR- - .  In (2re) + c:t ] + OIL (7]-0) In ~-o J' 

, [ .  (,,)] V T - + ~  [(x=r~ - -  X~za) e~ - -  (z~ra - -  X~z~) e~] + 7o ~ 0 -%o In "~o " 

(1.8) 

Not only do relationships (1.8) yield the principal terms of the fundamental solution 
in the case of a small distance between the source and the point of observation, but they 
also make it possible to derive a fundamental solution in the plane problem with rectilinear 
anisotropy, into which the cylindrical anisotropy as r, r 0 ~ ~ degenerates. However, it 
should be kept in mind that in the axisymmetric problem the value of the function T, as 
follows from (1.7), is calculated from its value at infinity, whereas in the plane problems 
the fundamental solution at infinity may be unbounded. Therefore, we will calculate T from 
some fixed point rz, z1: 

T (p) (r~, z; 0, Zo) = lira [T (r o + ra, z; ~ ,  ~)  - -  T ~o + rl~, zi; r o, %)]. 

When we take (1.8) into consideration the fundamental solution for T(P) in the plane 
steady heat-conduction problem for a rectilinear anisotropic medium has the form 

T(v)(rA, z; O, zo) = --Qo(2~Xr~) -1 In B + c o, 

where th~ constant ~0 = Q0(~gXrr )-11n(rzA 2 + ;iA 2) and it can be dropped. Representations 
of T r(P and T,z(P are given by the corresponding relationships (1.8), provided that we 
drop the last terms in these. 

2. The Axisymmetric Fundamental Solution of the Nonsteady Heat-Conduction Equation. 
We will seek the solution of Eq. (0.2) with the right-hand side Q(r, 8; z, t) = Q06(r - 
r0)~(z - z0)6(t - to). Since the right-hand side is independent of 0, this dependence also 
disappears in (0.2). 
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For an isotropic medium and analogous equation has the form 

r,rr -'[- T,zz + T flr -- (~%rOT,t = F, F = ( - Q J z . ) 8  (r - 

- re) ~ (z - Zo) ~ (t - to). 

We know t h e  s o l u t i o n  f o r  ( 2 . 1 )  from [1 ] :  

T* (r, z, t; re, zo, to) = c (4akta)~/2 exp 

Here t A = t - to, k = Xrr/C; a and b are represented by relationships (1.3); H(~) is the 
Heaviside function; I 0 is a modified Bessel function of the first kind, of zeroth order. 

As was done in Sec. i, replacing the variables from (1.4) in Eq. (0.2), we arrive at 
(2.1), from which, using (2.2), we write the sought fundamental solution of the nonsteady 
axisymmetric equation (0.2) 

(0) -- 2ZtQo r o -- 
T (r, z, t; r o, z o, to)= c~ (4nkiA)8/2 exp I o H (ta) 

[a0 is defined by relationship (1.6)]. After differentiation we derive the gradient of 
the fundamental solution 

(2.1) 

(2.2) 

X 

( ~176 - -  4Q~176 exp - - ~  X 

{ [ - - ( r - - ~ - X l  ~ Io ( 4 - ~ t ~ ) ~  ~ } + re/1 (4-~t~) ] e ~ -  !~-Io(4--ffi~A) e~}t t ( t~) .b  

For the limits as rr0/(kt A) + 0, ktA/R 2 ~ 0, ktA/(rr0), R/r 0 + 0 we have 

rr o - 2~Qor o (--R z) 
kta " + 0 = > ' T " - ~ c ~ 3 / 2  exp ~ - ~  g(ta), 

V'T --~ 4O~176 exp --  ~ [%1e, --  ez] H ('t~), 
c~ 2 ] /~  (4kt~)5/2 

k:---a-+R2 0 =r r ---- O (exp (\-- ~--UA)), R2 V T ---- 0 ( e x p ( - -  4--f/~A));R2 

- - - + 0 ,  0=>-T= exp --  + 0  - -  

~r o re ~ ~ V~o/ ' 

20o -- 4TtA %zzr A A- %rzZa) er -4- VT ~ zc~2X~ (4kta) 2 exp (-- 

+ (z~zr~ - x - ~ )  ~z + z . R o  \ ~ 7 j .  

(2 .3 )  

As in the case of nonsteady heat conduction, relationships (2.3) yield not only the 
asymptote of the fundamental solution for limited times and at a limited distance between 
the source and the point of observation, but also the fundamental solution of the plane 
nonsteady heat-conduction problem for a rectilinear anisotropic medium, provided that the 
last terms in these formulas are dropped. 
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CONTACT PROBLEM IN THE THEORY OF ELASTICITY FOR 

NARROW AREAS, WITH WEAR TAKEN INTO CONSIDERATION 

A. N. Burmistrov UDC 539.3 

i. We examine the spatial steady contact problem for the theory of elasticity in the 
presence of wear. Let a body 1 slide relative to body 2; let there be no wear in this case, 
and let the linear wear j for body 2 be proportional to the work of the force of friction 
[i] 

j -~- K*~lpl , 

where p~ is the pressure; D and K* are the coefficients of friction and proportionality 
between the work of the force of friction and the volume of material removed; s represents 
the friction path. 

Let us choose an affine system of coordinates Oxzylz l, connected to the contact (the 
Oz I axis is perpendicular to the contact and directed toward body i), so that e~, %, e z ex- 
hibits unit length, and the angle between ex and % is equal to ~ (see Fig. I). 

Let the field of the vector for the sliding velocity be uniformly plane-parallel: V = 
-vey, the area of contact Gl = {(xl, Yl): xl- ~ xl ~ xl +, Yl-(Xl) ~ Yl ~ YI+(X~):} [Yz• 
are continuous functions]. The shape of the bodies and of the contact is independent of 
time. This hypothesis is valid, for example, in the following cases: a) 2 represents the 
half space; b) i is the rocking body and 2 is the bearing ring. 

The equation from the theory of elasticity, with wear taken into consideration, has 
the form 

P l (~ r  

o J r (~1' ~1' z l '  Y~) 
GI y 

(1.1) 

17/' 

Y7 rz~ 

Fig. I 
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